Thermodynamics of oligomer formation: implications for secondary organic aerosol formation and reactivity.
نویسندگان
چکیده
Dimers and higher order oligomers, whether in the gas or particle phase, can affect important atmospheric processes such as new particle formation, and gas-particle partitioning. In this study, the thermodynamics of dimer formation from various oxidation products of α-pinene ozonolysis are investigated using a combination of Monte Carlo configuration sampling, semi-empirical and density functional theory (DFT) quantum mechanics, and continuum solvent modeling. Favorable dimer formation pathways are found to exist in both gas and condensed phases. The free energies of dimer formation are used to calculate equilibrium constants and expected dimer concentrations under a variety of conditions. In the gas phase, favorable pathways studied include formation of non-covalent dimers of terpenylic acid and/or cis-pinic acid and a covalently-bound peroxyhemiacetal. Under atmospherically relevant conditions, only terpenylic acid forms a dimer in sufficient quantities to contribute to new particle formation. Under conditions typically used in laboratory experiments, several dimer formation pathways may contribute to particle formation. In the condensed phase, non-covalent dimers of terpenylic acid and/or cis-pinic acid and covalently-bound dimers representing a peroxyhemiacetal and a hydrated aldol are favorably formed. Dimer formation is both solution and temperature dependent. A water-like solution appears to promote dimer formation over methanol- or acetonitrile-like solutions. Heating from 298 K to 373 K causes extensive decomposition back to monomers. Dimers that are not favorably formed in either the gas or condensed phase include hemi-acetal, ester, anhydride, and the di(α-hydroxy) ether.
منابع مشابه
Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols
Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been ...
متن کاملAqueous-phase oligomerization of methyl vinyl ketone through photooxidation – Part 2: Development of the chemical mechanism and atmospheric implications
Laboratory experiments of efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase were simulated in a box model. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. Upon model sensitivity studies, in which unconstrained rate constants were varied over several orders of magnitude, a set of reaction parameters was found th...
متن کاملA qualitative comparison of secondary organic aerosol yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2
The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, 1-carene, and limonene was investigated using a dark flowthrough reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first-generation gasphase chemistry suggests that differences in observed aerosol yie...
متن کاملThe SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation
Our current understanding of secondary organic aerosol (SOA) formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i) the potential for products of multiple oxidation steps contributing to SOA, and (ii) the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of d...
متن کاملOligomer formation in the troposphere: from experimental knowledge to 3-D modeling
The organic fraction of atmospheric aerosols has proven to be a critical element of air quality and climate issues. However, its composition and the aging processes it undergoes remain insufficiently understood. This work builds on laboratory knowledge to simulate the formation of oligomers from biogenic secondary organic aerosol (BSOA) in the troposphere at the continental scale. We compare th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 18 شماره
صفحات -
تاریخ انتشار 2013